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The Korteweg-De Vries equation, which describes the non-linear propagation of perturbations in a jet of 

incompressible fluid emanating from a slit in a planar screen and propagating along a wall is considered. 

When account is taken of the natural vibrations of the wall, the equation becomes inhomogeneous. If an 

external action is specified in the form of a running wave, the particular solution of the inhomogeneous 

equation may be sought in an analogous form. As a result, the simplest problem in the theory of dynamical 

systems in the Hamiltonian formulation arises. As usual, the existence of a homoclinic structure in the 

neighbourhood of the separatrices is deduced from an analysis of a Poincart transformation. Among the 

trajectories belonging to the homoclinic structure in the secant plane, there are some with properties which 

are formulated in terms of determinate chaos. A fundamentally important conclusion concerning the dual 

role of solitons at the non-linear stage of the wave motion of the fluid follows: on the one hand, they serve as 

the nuclei of large-scale coherent structures and, on the other hand, they are responsible for the onset of 

stochastic pulsations. 

LET A planar jet of viscous incompressible fluid emerge from an aperture in a screen into a space 
where a fluid with the same physical properties is at rest. We will assume that there is a rigid wall, 
which bounds the jet from below and is arranged perpendicular to the screen. For simplicity, we will 
assume the wall to be a plate and take the distance from the leading edge up to the point being 
considered on its surface as the characteristic length. We will assume that the plate coincides with 
the y’ axis of a Cartesian system of dimensionless coordinates x’, y’. By virtue of the no-slip 
condition on the surface of the plate, the two components of the velocity vector U’ and u’, referred 
to the maximum velocity of the fluid particles in the jet, vanish. As the outer edge of the jet, y’+ 03, 
is approached, the velocity also tends to zero. The bulk of the jet constitutes an unusual boundary 
layer. 

Similar motions of a viscous fluid occur on a rotating disc [1] and, also, near a heated vertical plate [2]. In the 
latter case, the fluid floats upwards under the action of the buoyancy force. The special features which arise in 
the velocity field in the neighbourhood of the edges of rigid surfaces were pointed out in [3] and the steady 
separation of the jet and the subsequent development of a zone of recirculating flow have been studied in [4]. 
The stability of the fluid motions, which had been constructed in [l, 21, with respect to long-wave perturbations 
was analysed in [5]. 

Results which refer to the fine structure of the velocity field have been obtained in [3-51 within the 
framework of modern boundary-layer theory under conditions of free interaction with an inviscid flow. This 
theory is based on the expansion of the required functions in asymptotic series in powers of a small parameter 
E = R-“14, where the Reynolds number R-+ m. In the viscous sublayer adjacent to the wall past which the flow 

occurs, the excess pressure p’, which is measured from the pressure in the space surrounding the jet and 
reduced with respect to twice the velocity head, is of the order of e4 while the longitudinal component u’ and 
the transverse component u’ of the dimensionless velocity vector are estimated by means of E* and 2, 
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respectively. As a result, the problem reduces to the integration of the Prandtl equations m which the gr;t&~rtt 
of the self-induced pressure has to be determined jointly with the velocity held. The relationship between rhc 
EXCESS pressure and the displacement thickness -,4’. which also appears In the boundary condition on the trmcr 
edge y’-+ w of the boundary sublayer, closes the problem. 

The situation fundamentally changes when the order of magnitude of the dimensionless excess pressure 
becomes greater than l 4, which causes a corresponding increase in the values of the IongitudiI~al and transverse 
velocity components of the perturbed flow. An asymptotic theory of waves with increased amplitude. which 
rests on the earlier assumption that R-t m, has been developed in [6] and wassubsequently considered in f7. Kj. 
Its basic consequence reduces to the fact that, in its turn, the boundary domain of a jet is stratified into :w;rt 
sublayers with quite different properties. The role of viscous fangeutial stresses is negligibly smah in the upp~ 
of the two subtayers which are formed, and the term ~~~~~~~.~~ drops out of the Prandtl equations hcrc. The 
system of equations which has been simplified in this manner admits of a simple integral which satisfies ah thy 
boundary conditions of the problem if the displacement thickness is defined by the KorteweggDr Vrics (KDV 1 
equation. The latter equation is homogeneous in the case of a wall with an initial position \.’ = 0. However 
when account is taken of the natural oscillations of the wall in the form y’ = J*:, = h’(r’, r’). it turns iiirtr ;tii 
inhomogeneous KDV equation. 

By means of a normalized system of units, where the former notation with the omitted prime it5 :i 
superscript is used for the independent variables and the unknown functions, we get [6--X] 

aAh 3AA, a3Ah 

~ +Ahx-= ar 
- -- fo(l, x) 

ax3 

a2A a3ia 
p=- -$-p A,=h+A, f*= ~ 

a2 

It is convenient to take the outer perturbation in the form .(;, = &$‘(vl, crx), which shows the 
amplitude B,, as well as the frequency and wave parameters v and IY explicitly. We now carry out the 
change of independent variables I-+ v’ ‘1. .Y+ LY -‘,v and introduce the new required function 
A,,--*a7AI,. From (I), we then obtain the equation 

a4 aAh a3Ah 

w ..t-fAh -= ____ I’- Bfjf. x) 
ax ax3 

IJ! 

in which only two positive constants: w = t~itu’ and B = &it2 appear, 
Let us now consider a wafl under the action of a wave pro~ag~t~n~ aiong it in the direction of’ the 

jet ffow. In this simplest case, it is possibie to assume that .f=f’(c)+ t= x-f and also to seek a 
solution of Eq. (2) in the form of a running wave AI, = F(e). As the result of a single integratj~)n of 
the ordinary differential equation which defines F. we find 

d’F/dt” + CAF - ?hP = C + H(g), I = Jf@) d4 i.‘l) 

where C is an arbitrary constant. This is an equation for the forced vibrations of a non-linear 
oscillator with a quadratic restoring force and, since there is no term with dF/‘lcl<. there is no 
dissipation of energy during the operation of the oscillator. Let us write (3) in the form of a system 
of canonical equations 

dF/dt = lW/W = P 

dPfdg = - @f/E@ = =h F2 - al;’ f C f- ISi($) 
{‘lj 

in which the Hamilton function 

H=H,(F, P) t BHi(F, .$) =‘/21’2-‘/6F3t1fZ L#” -. CF t BFZ(t) 

is used. 
It is now possible to make use of well-known results of the modern theory of oscillations, having 

first turned to the limiting case when B -+(I. For simplicity, let us assume that the wave, which rum 
along the wall with the fluid jet adjacent to it, is harmonic and thin the .function I = sin~corrcsponds 
to it. 
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Let us start with a phase picture of system (4) when B = 0. In this case, the Hamilton function is 
explicitly independent of 5, and system (4) therefore admits of a first integral H&F, P) = const and, 
as can be seen from Fig. 1, is characterized by two equilibrium pasitiom: F = Fo(5, o), P = PO@, 0) 
and F = F,(& 0), P = P,,(& 0) which are described by the singular points 

FQ * w -d/w’ - 2C, PO = il (5) 

F,=w+v’o” -2C, Pn=O (6) 

Their existence is due to the inequality w2>2C which is assumed to be satisfied. The closed 
trajectories which surround the centre C are periodic solutions of the initial KDV equation and the 
loops with the separatrices of the saddle S are sobtons which propagate along the jet with respect to 
the positive ba~kgro~d F, = ut -I- VW’ - 2C, P, = 0 for any value of the constant C. The equation 
of the separatrices in parametric form is obtained from the well-known relationship which specifies 
the form of a soliton F = Fsol(,$, 0), P = P,,,(& 0). According to [IO], for example, we have 

F SO1 =Fn - 3&.? -2Cch-2n 

P so, = 3(02 - 2C)‘j4 sh q ch-3q, Q = (w’ -- 2C)1/4~/2 (7) 

It is of fundamental interest to answer the question as to which motions can arise in system (4) 
and, in particular, which involve the separatrices of the saddle point when Bf 0. 

Results referring to the neighbourhood of the centre C are formulated most simply. According to 
Poincar&s theorem [ 111, a family of periodic solutions F = FQ(& 3 )$ P = P& 8) of the system of 
Eqs (4) exists for sufficiently small values of the parameter B, and this family is anal~ically 
dependent on this parameter and reduces, when B = 0, to solution (5) subject to the condition that 

(cd-2cy4#j j=o > , rtl ,a, I (8) 

In the case under consideration, the processes occurring in the system are actually weakly 
non-linear and, as regards the initial fluid jet propagating along a wall, they are realized in the small 
amplitude waves which run along it. Condition (8) serves to preclude resonances. 

Similar results also hold for the neighbourhood of the saddle point S. On the basis of Poincare’s 
theorem which has been cited above, it may be asserted that the family of periodic solutions 
F = F, (4, B), P = P, (6, B), which arises for sufficiently small values of the parameter B, is 
analytically dependent on this parameter and reduces to solution (6) when B = 0. Since the 
non-linear term %F2 on the right-hand side of the second of Eqs (4) turns out to have a decisive 
effect on the course of the whole process, there are no additional conditions of the type (8) which 
preclude the existence of resonances. The above-mentioned periodic solutions describe pulsations 
which develop in the unstable zone (6). In the case of the initial KDV equation, this background is 
the limiting state of jets which is attained by them as a result of a growth in the displacement 
thickness. 

Let us now investigate what takes place with the separatrices of the saddle point when the 
parameter B is non-zero but remains quite small. As was noted above, when B = 0, the loops of 
integral curves with the separatrices of the saddle serve to depict the solitons of the KDV equation. 
The introduction of an external periodic force into system (4) therefore enables one to indicate 
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states into which a soliton can pass under the action of a wave which is running along the wall 
bounding the jet. 

Up to now, explicit use has not been made of the fact that one of the separatrices is stable in the 
neighbourhood of the saddle S while the other is unstable (locally, we mean by stable a separatrix 
occurring in S as .$-+ QJ and, by unstable, a separatrix originating from S as .$--+ - z ). Let us denote 
the first by A, and the second by means of A, and let us distinguish two branches in each of them: 
A,?, A; and AL, A, in accordance with the position of these branches in the upper or lower 
half-planes of the phase plane F, P (see Fig. 1). The continuations of the branches ,~,~~ and A; which 
form the loop yield one and the same solution (7), that is, they are actually coincident. The saddle 
point itself can be treated as an unstable equilibrium state of hyperbolic type. For sufficiently small 
value of B, the periodic solutions F = F,(<, B), P = P,(t, B) will then also be hyperbolic. In the 
three-dimensional phase space 5, F, P, the separatrices become invariant surfaces W,(B) and 
W,,(B). Trajectories (integral curves) along the first of them tend towards a periodic motion while 
those along the second depart from it as 5 -+ a. When B = 0, the two surfaces W,(B) and W,, (B ) 
merge and transform into a single cylindrical surface, the shape of which can be obtained by passing 
a generatrix parallel to the t-axis through each point of the loop of separatrices consisting of the A, 
and A, branches together with their extensions. The mutual position of the surfaces W,(B) and 
Wu (B) with B # 0 determines the possible classes of solutions F = FS,,l (C, B), P = !‘,,,I (P, B 1. 

A measure of the distance between the stable and unstable manifolds being considered is given by 
the Mel’nikov function [12] 

where the braces, as usual, denote canonical Poisson brackets. As applied to the system of 
equations (4), we find by direct calculations 

J(9,) = 3 t/ G.? - 2c cos 90 ; 
sh n 
- sin 

2rl 

-0~ ch3n (02 - 2c)“4 
dn = 

= 12n 
sh R{GJ~ - ~C’J-“/~ 

ch &r(w2 - 2c3-‘j4 _ 1 cos90 

The equality cosqo = 0 fixes the simple isolated zeros CJQ = (n + i/z)rr (n = . L . --I. ii, 1, . . .) d the 
Mel’nikov function. It follows that, when Bf 0, the stable surface W,(B) and the unstable surface 
W,(B) are split and intersect, and that the system of equations (4) does not have a first integral 
which is analytically dependent on 6 and the phase variables F and P. 

It is useful to formulate the results which have been obtained in terms of a Poincare transform by 
finding the dependence of the coordinates of the points (F, P) in the secant plane 5 = 2~(n + 1) as a 
function of the coordinates (F, P) in the 5 = 27rn plane. All the planes 5 = const which are formed in 
this manner are displaced by an integer number of periods of the perturbing force and we shall 
therefore identify them with one another. The possibility of speaking of a point mapping of a plane 
,$ = const into itself follows from this. The cutting of the surfaces W,*(B) and W~~(B~ by the plane 
[mod2n = const being considered yields curves which are formed as a result of the successive 
application of the transform. It is customary to refer to the curves as separatrices 2131. Stable and 
unstable separatrices have a denumerable set of common points. These points of intersection of the 
separatrices in the secant plane belong to double asymptotic trajectories which were called 
homoclinic trajectories by Poincare. Their neighbourhood, for which the term homoclinic structure 
is used, contains an infinite variety of trajectories and therefore defines the extremely complex 
dynamics of the system under consideration in spite of its relatively simple form. Methods of 
studying stochastic processes are typically employed to investigate non-linear oscillation in this 
region. An analysis of such oscillations in terms of symbolic dynamics has been developed in [ 141. 

We will now point out some fundamental consequences. The simplest bounded solutions of 
system (4) are periodic integrals with a cycle, the magnitude of which is a multiple of the period of 
the perturbing force, and their existence foflows from what has been said above. Among the 
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bounded solutions, there are also aperiodic solutions and, within those, the phase variables F and P 
change within fixed limits which depend on the amplitude B of the perturbing force. The doubly 
asymptotic solutions which have been mentioned belong to this set, and orbits for which, during 
motion along them, a point with the coordinates F = F(t), P = P(5) completes a single complete 
revolution as ,$ changes from - UJ to a~ correspond to two such solutions. 

System (4) admits of various types of unbounded integrals. Among those, there are some which 
increase without limits as &+ - 03 but are bounded as ,$+ CC. Moreover, the range of variation of F 
and P remains finite for non-asymptotic motions in the case of sufficiently large values of 5 and 
becomes small in the case of asymptotic motions if B+ 0. Unlike those, there are integrals which are 
bounded as ,$-+ -CO but increase without limit as t-+ ~0. In those integrals, the phase variables F and 
P vary within an interval which remains finite in the case of non-asymptotic motions and becomes 
small in the case of asymptotic motions in the limit as B+O. Finally, system (4) possesses solutions 
which are unbounded as t-+ +w in which F and P execute oscillations within finite limits in any 
sufficiently large range of 5 which has been specified in advance. 

Apart from this, a complete analysis of the trajectories belonging to a homoclinic structure in the 
secant plane rmod2n = const leads to a fundamentally important conclusion regarding the 
development of dynamics which is referred to as determinate chaos. In order to explain the basic 
properties of the orbits occurring in the exceedingly complex dynamics, let us fix the accuracy in the 
specification of the initial conditions for system (4). It is then possible to specify a set of such 
conditions which are identical at the adopted accuracy to one another and define solutions of system 
(4) which differ not only quantitatively but also qualitatively. It is clear that the behaviour of 
the orbits corresponding to these solutions will be random in the three-dimensional phase space 5, F 
and P. 

We will now make use of the established properties of the solutions of a Hamiltonian system in 
order to describe the wave motions which can arise in a jet of an incompressible fluid if the wall 
bounding it from below executes harmonic oscillations. The basic conclusion lies in the fact that, as 
soon as the perturbations enter the substantially non-linear stage of their development, large-scale 
ordered structures are formed in them which are determined by the solitons of the KDV equation. 
The break-up of these structures under the action of an oscillating plate is accompanied by the 
generation of various, more-complex forms of motion and, in particular, random pulsations. The 
latter arise in the bulk of a laminar flow as a result of the further natural development of non-linear 
processes which lead to a pronounced distortion of the initial Tollmin-Schlichting waves. Hence, 
the appearance of narrow surges of comparatively large amplitude in the traces of signals in real 
oscillograms serves to foreshadow the commencement of the stochastization of the perturbation 
fields. It is characteristic that random components in the motion of a fluid arise very early on and 
their subsequent amplification leads to the transition of laminar flow into turbulent flow. On the 
other hand, the formation of new ordered structures which are extremely close to solitons is possible 
if the amplitude of the perturbing oscillations tends to zero. 

Amplification of broad band noise as a result of its non-linear interaction with an initially 
monochromatic Tollmin-Schlichting wave is characterized by related features. Experiments with a 
Blasius boundary layer on a flat plate placed in a stream of incompressible fluid have been carried 
out recently [15]. In this case, the propagation of perturbations at the substantially non-linear stage, 
which corresponds to the analysis carried out above, obeys the Benjamin-On0 integro-differential 
equation [6, 71. With the generally accepted notation, instead of (l), we have 

aAh aAh 1 
-+AAh-=_ 

O” a’,&, 

at ax n 
_m x_xdX -f&x) s 

Ah =h +A, f. = L ; a2h’ax2 d-x 

71 -- x-x 
As was done earlier, we will write the outer perturbation by means of f0 = B&H, ax) with the 

amplitude B. as well as the frequency and wave parameters u and CY shown explicitly. By making the 
replacement of the independent variables t+ v-l t, x+aplx and introducing the new required 
function Ah-+ aAh, we obtain the standard equation 
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aAh 
w- +A 

aAh I - a=Ah/aX2 

at qF=; 2 x -- x 
dX -- Bf(t, x) 

from (9). in which two positive constants: w = ~‘/a’ and H = f&/a’ occur. Let ./‘= j’(c) and 5 =- s -.. I 
We shall then also seek the solution of the latter equation in the form of a travelling wavt’ 
A,, = F(5). As a result of a single integration of the equation defining F we find 

1 d 
-- 

71 4 
d( - wF + SF= = C -- BI([), I = Jf(S_) dg 

where C is an arbitrary constant. Since 

it may be assumed that the function I = sint. 
Equation (10) has been successfully used to explain the nature of the short-scaled large-amplitude 

surges mentioned above which are generated by a source which is harmonic with respect to time in 
an incompressible Blasius boundary layer and revealed in the oscillograms of periodic pulsations 
[ 161. In the limit, periodic solutions give solitons as occurred in the case of the KDV equation. 
Equation (10) can therefore be used to study the possible forms of motion which arise when the 
algebraic Benjamin-On0 solitons break down. This obviously also yields a mathematical model, the 
search for which has been discussed [lS] in c~~nnection with the development of chaotic p~lisations 
under the action of broadband noise on a ToIlmjn-Schlichting wave at the non-linear stage in the 
growth of the amplitude. However, the model proposed is significantly more complex than that 
which is the basis of the analysis which has been carried out, since it does not reduce to ;I 
Hamiltonian system of equations on account of the integral term on the left-hand side of (10). ‘The 
latest experimental data 1171 are evidence in favour of the closeness (in a qualitative connection) 01 
the non-linear processes in a jet propagating along a wall and a Blasius boundary layer 
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